Injection molding machines definitely do not have the modern, high-tech feel of 3D printing technology. There is really nothing cool about injection molding, but nonetheless it is a requirement for most hardware products.
Pictorial of an injection molding machine supplied courtesy of Rutland Plastics. An injection mold consists of two halves that are forced together to form a cavity in the shape of the part to be produced.
Hot, liquid plastic is then injected at high pressure into this cavity. The high pressure is needed to ensure that the plastic resin fills in every crook and cranny of the mold cavity. Once the plastic has had time to cool, the two halves of the mold are pulled apart, and the part is ejected. Although designing for injection molding can be quite complicated, and the cost of the molds themselves are incredibly expensive, there is one huge reason why injection molding is still used today.
No technology can beat injection molding when it comes to producing millions of identical copies of a part at an incredibly low price. The more parts you need to produce with the mold the more expensive the mold. This is because the mold must be designed to withstand incredibly harsh conditions. Over and over again a mold is subjected to high temperature and high pressure.
These two destructive forces act to quickly degrade the molds to the point of not producing parts of sufficient quality.
In order to tolerate this harsh environment injection molds are made from hard metals. The hardness of the metal required is typically determined by how many parts you plan to produce with the mold. For example, a mold designed to produce 10, parts can be made of a much softer metal than a mold designed to produce 1 million parts.
Aluminum is a popular choice if you are producing less than 10, parts and works well for low volume production. Once you reach higher production volumes you will need to switch to a harder metal such as steel. The harder the metal, the more difficult it is to make the mold, so the higher the cost. It also takes much longer to produce a mold from a hard steel. This is because molds are created by milling i. It is infinitely more practical than financing your mold costs with a bank loan. The high cost of the molds is only one of the issues with injection molding.
The other downside to injection molding is that it greatly complicates, and restricts, the actual design of your plastic pieces. Once you have a perfectly working prototype from a 3D printer, you then have to spend significantly more time and cost making it work for injection molding.
Keep in mind that you should design your plastic parts for injection molding from the beginning. Some requirements of injection molding, such as draft, can be delayed at least until your second prototype. But other requirements, such as uniform wall thickness and undercuts, need to be implemented from the very start.
A main issue with injection molding is that your plastic parts have to be removed from the mold. Once the plastic has cooled, the two halves of the mold are opened and the newly formed plastic piece is removed.
For example, any 3D design for injection molding must incorporate draft. Draft simply means adding a slight angle to any surfaces that are parallel to the direction the part is pulled from the mold. In most cases 1 to 2 degrees is sufficient.
Examples illustrating proper draft. Provided courtesy of ICO Mold. Some experts will tell you that you should include draft in your 3D model from the very start.
I generally recommend adding draft once you have a high degree of confidence in your prototype. For most products this means adding draft after the first or second prototype version.
Ejector pins are used to remove the plastic parts from the mold. As the name implies, these are small cylindrical pins which push outwards to eject the part from the mold. The location of the ejector pins is not trivial so you need to give some thought to their placement. Ideally, you want them to be located where your part is structurally strong to prevent the part from warping on ejection.
Secondly, the ejector pins tend to leave small marks on the product where they make contact. If you look closely at most plastic parts you will be able to see these tiny, circular indentations from the ejection process. You want to design your product with this in mind.
Strive to have these pins make contact with the part in places that are not critical for the appearance of your product. You may even try to hide the ejector pin marks under a label or logo. If you are unable to easily remove your plastic part from a simple two-piece mold you can use something called side actions. Side actions are parts of the mold that are inserted during molding, then pulled out before the main mold sections are pulled apart.
Their direction of movement is perpendicular to the pull director of the two main mold halves. Try your hardest to avoid needing side actions, since they add considerable cost and complexity to the molds. One of the main ways to eliminate side actions is by avoiding the design of undercuts. An undercut is a feature that prevents the part from being removed from the mold with a single pull. Many times placing a slot underneath the feature will allow the use of a single pull mold instead of requiring side actions.
Design 1 has an undercut region requiring a side action. Design 2 adds a slot to eliminate the need for a side action. Image supplied courtesy of Proto Labs. One aspect of injection molding that has a huge impact on your product design is the requirement for uniform wall thickness. After injecting plastic into the mold it is essential that the plastic cools at a uniform rate. Designing a part that keeps a uniform wall thickness definitely takes some experience to do correctly.
Examples to design with uniform wall thickness. Perfect corners and edges are not practical to achieve with injection molding. At least, not reliably over large production volumes. Therefore, all edges and corners should be either rounded or chamfered to allow the resin to fill them more uniformly and consistently.
Runners is the term used for the channels incorporated into a mold for the hot resin to travel through to reach each cavity. Larger runners allow the resin to flow more easily and at lower pressures. However, large channels require more time to cool and create more scrap, both of which impact the part cost.
Smaller runners, on the other hand, minimize cooling time, scrap, and ultimately part cost. The downside to small runners is the higher pressure required to force the hot resin to flow through them. A solution that facilitates the use of small runners while also minimizing the required pressure is to use what are known as hot runners.
Small heating elements are incorporated into the mold near the runners so as to keep the resin more molten allowing it to flow more easily at lower pressure. Nothing is ever free though, and the downside of hot runners is the additional mold complexity which always translates into additional costs.
In most cases, at least initially, you are best off using only runners without heating elements which are referred to as cold runners. Remember, always start with the simplest, lowest cost solution. A parting line is found where the two mold halves meet. This interface between the two halves is never perfect so a small amount of resin leaks out. This leakage usually gets worse as the mold ages and is worn down. You obviously want it to be placed ideally on a non-visible portion of your product.
You can eventually decrease your molding time by using multiple cavity molds. This serves to increase your production speed and reduce your manufacturing part cost. Multiple cavity molds allow you to produce multiple copies of your part with a single injection of plastic. It is wise to run at least several thousand units before upgrading to multiple cavity molds.
Entrepreneurs with a limited budget will want to maximize the use of single cavity molds unless you have a manufacturer financing your mold costs. In most situations, you will need a separate mold for each custom plastic piece required for your product.
But many, if not most, products require more than just two pieces of plastic. Molds are very expensive so the cost to purchase multiple molds is a huge financial obstacle. You should always strive to design your product to minimize the number of unique custom plastic pieces required.
Another option to reduce the number of molds needed is through the use of a special type of multi-cavity mold called a family mold. A family mold allows you to consolidate multiple molds all into a single mold. Whereas a typical multi-cavity mold creates multiple copies of the same part, a family mold creates different parts at one time.
Unfortunately, nothing is ever easy and every solution has tradeoffs. The main issue with family molds is they require each part to be pretty much the exact same size. Otherwise, one part will fill up with resin before the other cavities. A family mold must be designed so all of the cavities fill up with resin at nearly the same rate. There is an incredible variety of plastic resins at your disposal each with its own characteristics. Two of the most commonly used resins for hardware products are Polycarbonate PC and acrylonitrile butadiene styrene ABS.
Polycarbonate has a much higher impact strength and has a much higher-quality appearance compared to ABS.
Polycarbonate is the most popular plastic used in higher end hardware products because of its higher impact strength and its better aesthetics. If appearance is critical for your product then PC is most likely the way to go.
If your product is low-cost then ABS may be the best choice. Citation Type. Has PDF. Publication Type. More Filters. The main … Expand. Highly Influenced.
View 7 excerpts, cites background. Effects of different backbone binders on the characteristics of zirconia parts using wax-based binder system via ceramic injection molding. Journal of Advanced Ceramics. In this work, various backbone binders were used in wax-based binder system to formulate zirconia parts by ceramic injection molding CIM.
The effect of different backbone binders on the molding, … Expand. View 12 excerpts, cites background. Injection moulding is one of the most popular methods of processing polymers. It is a versatile process capable of producing high volumes with good dimensional tolerance while maintaining cost … Expand. View 3 excerpts, cites background. Purpose —Values of parameters such as temperature, humidity, number of plastic products and the location of plastic injection moulds are required to determine the efficiency of plastic injection … Expand.
View 1 excerpt, cites background. Materiale Plastice. News on Green Energy and Green Hydrogen is spread on popular and academic media.
0コメント